$\frac{\text { WJEC }}{\text { CBAC }}$

GCSE MARKING SCHEME

SCIENCE - PHYSICS

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCSE SCIENCE - PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Page

Physics 1 - Foundation Tier 1
Physics 1 - Higher Tier 5
Physics 2 - Foundation Tier 11
Physics 2 - Higher Tier 15
Physics 3 - Foundation Tier 19
Physics 3 - Higher Tier 23

GCSE Science - Physics 1

Marking Scheme - Summer 2014

FOUNDATION TIER

GCSE Science - Physics 1

Marking Scheme - Summer 2014

HIGHER TIER

Question				Marking details	Marks
1.	(a)	(i)		Alpha / α / helium nucleus	1
		(ii)		1000 [counts per minute]	1
		(iii)		1000 [counts per minute]	1
	(b)	(i)		Plots (allow $\pm 1 / 2$ small square division) (2) -1 for each error to a maximum of 2 Smooth curve between 10 and 50 mm allow $\pm 1 / 2$ small square division (1) Don't allow wispy, wobbly, thick, double lines	3
		(ii)		As the thickness increases, the counts per minute (count rate) decreases (1) in smaller and smaller intervals / at a decreasing rate (1) Treat as neutral: in a non-linear way or gradient decreases as the thickness increases ecf from graph Award 2 marks for: every 10 mm the count rate halves	2
		(iii)	(I)	1000 (1) but not on answer line $1 / 4$ expressed in any terms or 0.25 (1) Accept 25\%	2
			(II)	125 (1) [counts per minute] The count rate halves every 10 mm (1) Accept is a quarter of the 40 mm value or half the 50 mm value Or extrapolated graph (1) value between 50 - 200 (1)	2
				Question total	[12]
2.	(a)	(i)		Indicative content: Mass of measuring cylinder (from the first diagram) $=112 \mathrm{~g}$ Mass of measuring cylinder + liquid(from the second diagram) $=172 \mathrm{~g}$ Volume of liquid (from the third diagram) $=75 \mathrm{~cm}^{3}$ Mass of liquid $=60 \mathrm{~g}$ $\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{60}{75}=0.8 \mathrm{~g} / \mathrm{cm}^{3}$ 5 - $\mathbf{6}$ marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.	6

GCSE Science - Physics 2
Marking Scheme - Summer 2014
FOUNDATION TIER

Question 4. (a) (i)			Marking details	Marks
			9 [m]	1
4.		(ii)	2 [s]	1
	(b)		Speed $=\frac{9}{2}=4.5($ ecf on (i) or (ii) above) $[\mathrm{m} / \mathrm{s}]$ (1-ans)	1
	(c)		The distances get / are bigger / balls get further apart. Don't accept further away.	1
	(d)		Distances between the ball positions would be less / the balls would be closer together.	1
			Question total	[5]
5.	(a)	(i)	Mass is the amount of inertia or material (accept "stuff" (1), whereas weight is the pull of gravity on the car (1). Do not accept that mass is measured in kg, weight is measured in Newtons.	2
		(ii)	weight $=800 \times 10=8000[\mathrm{~N}]$ (1-ans)	1
	(b)	(i)	3000 [N]	1
		(ii)	$1200[\mathrm{~N}]$	1
		(iii)	$a=\frac{1200(\mathrm{ecf})(\mathrm{ii})}{800}(1-\mathrm{sub})=1.5\left[\mathrm{~m} / \mathrm{s}^{2}\right](1-\mathrm{ans})$	2
		(iv)	The [horizontal] forces become balanced (accept match / equal / level out) (1) because the air resistance (or drag) increases [with speed] (1) To award both marks both statements must be linked.	2
			Question total	[9]
6.	(a)	(i)	0.8 [s]	1
		(ii)	3.2 [s] (allow ecf from (i)) If answer is 3.2 in (i) then don't accept 0.8 as ecf in this part.	1
		(iii)	subs $\frac{15}{3.2(\text { ecf })}(1)=4.69$ or 4.7 or $4.6875\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ Ignore the signs. Don't accept 4.68 or 4.687. A common ecf is $\frac{15}{4.2}=3.57$ or 3.6	2
		(iv)	Horizontal line would be longer (1) because the reaction (or thinking) time (or distance) would be longer / would travel further [at constant speed] / slower reactions (1) Don't accept slower reaction time To award both marks both statements must be linked.	2

| Question | | Marking details | Marks |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \| | (-2 marks The candidate makes some relevant points, such as those
 in the indicative content, showing limited reasoning. The answer
 addresses the question with significant omissions. The candidate uses
 limited scientific terminology and inaccuracies in spelling, punctuation
 and grammar.
 0 marks The candidate does not make any attempt or give a relevant
 answer worthy of credit.
 Question total | | |
| | | Foundation tier paper total | $[\mathbf{1 2]}$ |

GCSE Science - Physics 2

Marking Scheme - Summer 2014

HIGHER TIER

GCSE Science - Physics 3
Mark Scheme - Summer 2014
FOUNDATION TIER

Question			Marking details	Mark
7.	(a)	(i)	192 (1) 20 (1)	2
		(ii)	Correct points plotted - allow $\pm 1 / 2$ small square divison on volume axis (2) -1 for each error. Curve of best fit up to (12,8) allow $\pm 1 / 2$ small square division (1) don't allow wispy, wobbly, thick or point to point lines	3
	(b)	(i)	Volume increases as height increases (1) description of curved relationship e.g. increases at an increasing rate or gradient increases (1) Don't accept non-uniformly / non-linearly / non-proportional	2
		(ii)	[Air] pressure is decreasing	1
		(iii)	Best fit line extrapolated (put tick on graph) (1) Answer consistent with graph (1)	2
	(c)	(i)	[The balloon's volume would] decrease (treat reference to pressure as neutral)	1
		(ii)	As the helium molecules are moving more slowly or have less [kinetic] energy / taking longer between collisions / less force applied in each collision / less collisions per second Don't accept closer together	1
			Question total	[12]
8.	(a)	(i)	Refraction	1
		(ii)	Total internal reflection / TIR	1
	(b)	(i)	Change of speed [at boundary] / change of density Don't accept speeds up or lower density	1
		(ii)	Hits the edge at an angle greater than the critical angle or greater than 42° (accept between $41^{\circ}-45^{\circ}$) (1) must be travelling [from more dense] to less dense medium (1)	2
	(c)		Emergent straight line should be drawn steeper (put tick or cross on the diagram)	1
			Question total	[6]

Question		Marking details	Mark
9.	Indicative content: A surface seismic wave travels across the surface of the Earth as opposed to through it. Surface waves usually have larger amplitudes and longer wavelengths than body waves, and they travel more slowly than body waves do. A P wave is a seismic body wave [that shakes the ground back and forth in the same direction and the opposite direction as the direction the wave to moving]/longitudinal wave. An S wave is a seismic body wave [that shakes the ground back and forth perpendicular to the direction the wave is moving]/transverse wave. S waves do not travel through fluids, [so do not exist in Earth's outer core [or molten rock (magma)]]. S waves travel slower than P waves in a solid and, therefore, arrive after the P wave.		
$\mathbf{5}-\mathbf{6}$ marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.			
3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar.			

GCSE Science - Physics 3

Mark Scheme - Summer 2014

HIGHER TIER

Question			Marking details	Mark
1.	(a)	(i)	192 (1) 20 (1)	2
		(ii)	Correct points plotted - allow $\pm 1 / 2$ small square divison on volume axis (2) -1 for each error. Curve of best fit up to $(\mathbf{1 2 , 8})$ (1) allow $\pm 1 / 2$ small square divison (1) don't allow wispy, wobbly, thick or point to point lines	3
	(b)	(i)	Volume increases as height increases (1) description of curved relationship e.g. increases at an increasing rate or gradient increases (1) Don't accept non-uniformly / non-linearly / non-proportional	2
		(ii)	[Air] pressure is decreasing	1
		(iii)	Best fit line extrapolated (put tick on graph) (1) Answer consistent with graph (1)	2
	(c)	(i)	[The balloon's volume would] decrease (treat reference to pressure as neutral)	1
		(ii)	As the helium molecules are moving more slowly or have less [kinetic] energy / taking longer between collisions / less force applied in each collision / less collisions per second Don't accept closer together	1
			Question total	[12]
2.	(a)	(i)	Refraction	1
		(ii)	Total internal reflection / TIR	1
	(b)	(i)	Change of speed [at boundary] / change of density Don't accept speeds up or lower density	1
		(ii)	Hits the edge at an angle greater than the critical angle or greater than $\underline{42^{\circ}}$ (accept between $41^{\circ}-45^{\circ}$) (1) must be travelling [from more dense] to less dense medium (1)	2
	(c)		Emergent straight line should be drawn steeper (put tick or cross on the diagram)	1
			Question total	[6]

Question		Marking details	Mark
3.	Indicative content: A surface seismic wave travels across the surface of the Earth as opposed to through it. Surface waves usually have larger amplitudes and longer wavelengths than body waves, and they travel more slowly than body waves do. A P wave is a seismic body wave [that shakes the ground back and forth in the same direction and the opposite direction to the direction the wave is moving]/longitudinal wave. An S wave is a seismic body wave [that shakes the ground back and forth perpendicular to the direction the wave is moving]/transverse wave. S waves do not travel through fluids, [so do not exist in Earth's outer core [or molten rock (magma)]. S waves travel slower than P waves in a solid and, therefore, arrive after the P wave.		
5-6 marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.			
3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar.			
$\mathbf{1 - 2}$ marks The candidate makes some relevant points, such as those			
in the indicative content, showing limited reasoning. The answer			
addresses the question with significant omissions. The candidate uses			
limited scientific terminology and inaccuracies in spelling,			
punctuation and grammar.			
$\mathbf{0}$ marks The candidate does not make any attempt or give a relevant			
answer worthy of credit.			

Question			Marking details	Mark
	(b)	(i)	Describe use of trace to find time delay of 3 mins (1) Accept 5-2 $=3 \mathrm{mins}$ STN2 distance from epicentre $=2000[\mathrm{~km}]$ (1) ecf from their lag time e.g. lag time of $2.5 \mathrm{mins}(0)$ distance $1650[\mathrm{~km}]$ (1) If no description present or indications on the diagrams only award 1 mark maximum. To locate the earthquake candidate stated "draw arcs of the appropriate (scaled) radius from the monitoring stations" or shown calculations that generate answers of 1.8 cm and 4.0 cm (ecf) or these arcs shown on the diagram (1) and locate the epicentre where the three circles intersect or point of intersection shown on the diagram (1). Reasonable attempt at finding epicentre with 2 (rough) arcs drawn or scale lines that cross circle given. (1) N.B. Point only indicated award 1 mark only 1 arc shown for STN3 and point indicated award 2 marks only Question total	[11]
4.	(a)		Correct substitution into $\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}} \rightarrow \frac{132000}{V_{2}}=\frac{154000}{50}$ Rearrangement i.e. $V_{2}=\frac{132000 \times 50}{154000}$ 429 [V] (1) accept 428 [V] or 430 [V] Alternative method: Substitution of 768 turns (1) Rearrangement to give 659 [V] (1) Subtraction of 230 [V] to give 429 [V] (1) Increased voltage (1) Because of increased number of [secondary] turns (1) To award both marks both statements must be linked. Failure of electrical equipment / Overheating of equipment / Fire / fuse blows ecf from (i) No effect. (1) Because the ratio of primary to secondary turns for the business remains the same / still connected to B and C (1) Alternative: The businesses lose their supply / the voltage falls to 0 (1) because B joins to C (1). To award both marks both statements must be linked. Alternating input current or voltage (1) creates changing magnetic field (1) links (or cuts) with output coil / induces an [alternating] current / induces an [alternating] voltage (1) Question total	,
	(b)	(i)		2
		(ii)		1
		(iii)		2
	(c)			3

| Question | | Marking details | Mark |
| :--- | :--- | :--- | :--- | :---: |
| 5. | Substitution into $v^{2}=u^{2}+2 a x(1)$
 $u=0(1)$
 $v=10 \mathrm{~m} / \mathrm{s}(1)$
 Alternative method: t calculated first
 OR another alternative method:
 $\mathrm{PE}=m g h=0.2 \times 10 \times 5=10[\mathrm{~J}](1)$
 $1 / 2 m v^{2}=10[\mathrm{~J}](1)$
 then $v=10[\mathrm{~m} / \mathrm{s}](1)$
 Recognition that v^{2} halves i.e. to $50(1)$
 Therefore new $v=\sqrt{50}=7[.07][\mathrm{m} / \mathrm{s}](1)$
 Alternative method:
 Initial KE $=10[\mathrm{~J}]$ ecf so rebound $\mathrm{KE}=5[\mathrm{~J}](1)$
 Calculation of $v=7[.07][\mathrm{m} / \mathrm{s}](1)$
 Substitution into $x=1 / 2(u+v) t(1)$
 rearrange so $t=\frac{2.5}{3.5(e c f)}(1)$
 Answer $=0.7[1] \mathrm{s}(1)$
 Award same format of marks if $x=u t+\ldots$. is used
 Question total | 2 | |
| (iii) | 2 | | |

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

